Přihlášení:
Menu
Logo týmu Bournemouth
Premier League | 18:30 - zítra
Logo týmu Arsenal
Náš tip:
2
1X2
Náš tip:
1
1X2
Logo týmu Berlin Union
Bundesliga | 18:30 - zítra
Logo týmu Leipzig
Náš tip:
0
1X2
Logo týmu Dortmund
Bundesliga | 15:30 - zítra
Logo týmu Bremen
Náš tip:
1
1X2
Logo týmu Mönchengladbach
Bundesliga | 20:30 - dnes
Logo týmu Hertha Berlin
Náš tip:
1
1X2
Logo týmu Argentinos
Primera Divisio.. | 02:30 - dnes
Logo týmu Estudiantes
Náš tip:
1X
DS
Logo týmu Česko 20
World Champions.. | 22:00 - dnes
Logo týmu Kanada 20
Náš tip:
5.5
UO
Logo týmu Hibernian
Premier League | 13:30 - zítra
Logo týmu Glasgow Rangers
Náš tip:
2
1X2
Logo týmu Ostrava Baník
1. liga | 16:00 - zítra
Logo týmu Teplice
Náš tip:
1
1X2
Logo týmu Genk
1e Klasse | 18:15 - zítra
Univerzální logo, oficiální logo týmu chybí
Náš tip:
1
1X2
Logo týmu Santos Laguna
Primera Divisio.. | 02:05 - dnes
Logo týmu Leon
Univerzální logo, oficiální logo týmu chybí
Serie B | 02:30 - dnes
Logo týmu Sport Recife
Logo týmu Banfield
Primera Divisio.. | 02:30 - dnes
Logo týmu Racing Club
Univerzální logo, oficiální logo týmu chybí
Primera Divisio.. | 04:05 - dnes
Logo týmu U.N.A.M.
Logo týmu Nagoja
J League | 12:30 - dnes
Logo týmu Jubilo
Logo týmu Torpedo Zhodzina
Premier League | 17:00 - dnes
Univerzální logo, oficiální logo týmu chybí
Logo týmu Opava
2. liga | 18:00 - dnes
Univerzální logo, oficiální logo týmu chybí
Univerzální logo, oficiální logo týmu chybí
2. Liga | 18:30 - dnes
Logo týmu Hannover 96
Logo týmu Hamburg SV
2. Liga | 18:30 - dnes
Logo týmu Darmstatd 98

Bayesova analýza a sportovní sázení

3. 3. 2015 08:00, upraveno: 28. 2. 2017 20:21
autor: vcer43
Sázkaři často hledají nové nástroje, které jim pomohou vylepšit proces určování pravděpodobností konkrétních výsledků. V tomto článku se tedy podíváme na Bayesovu analýzu, což je teorie, kterou v 18. století vymyslel Thomas Bayes. Jedná se o nástroj, který může sázkařům pomoct s přesnějším odhadnutím pravděpodobnosti konkrétních událostí (a výsledků sportovních zápasů).
Bayesova analýza
Bayesova analýza je nástroj, který může sázkařům pomoct s přesnějším odhadnutím pravděpodobnosti konkrétních událostí (a výsledků sportovních zápasů).

Zpětné uznání Bayesovy analýzy

Thomas Bayes se narodil kolem roku 1701 v Anglii a svůj život věnoval studiu teologické & matematické problematiky. Nicméně jeho přínos vědě byl oficiálně uznán až po jeho smrti v roce 1761. Konkrétně poté, co byla jeho studie s názvem „An Essay towards solving a Problem in the Doctrine of Chances“ předložena anglickému spolku vědců Royal Society, po čemž následovalo posmrtné uznání významu jeho práce.

Ale až po vynálezu počítačů – o takových 200 let později – byla Bayesova práce opravdu oceněna a dostalo se jí zasloužené pozornosti odborné veřejnosti. Od té doby byla Bayesova analýza interpretována a aplikována v mnoha různých sférách. Ve své jednoduché formě je Bayesův přístup pravděpodobně tím nejrozumnějším způsobem užití pravděpodobnosti a argumentování při činění rozhodnutí v situacích, kdy čelíme nejistotě. A mezi takové situace patří i hazard, respektive sportovní sázení.

Celá metoda spočívá v tom, že nejprve dáte dohromady vše, co víte o pravděpodobnosti budoucí události (výsledku) a poté – když získáte nové informace – testujete jejich dopad na původní míru pravděpodobnosti.

Vzorec analýzy

Bayesova analýza má hodně různých názvů, nicméně vždy se jedná o stejný (a poměrně jednoduchý) vzorec:

P(A/B) =  P(A) * P(B/A) / P(B)

Pravděpodobnost A za předpokladu (výskytu) B se rovná pravděpodobnost A krát pravděpodobnost B za předpokladu (výskytu A) děleno pravděpodobností B.

Ikona týmu Sevilla
Anketa: kdo myslíte, že zvítězí?
Ikona týmu Valladolid
100 Kč na tento typ vyhrává 270
Získejte 500 Kč zdarma za registraci u Tipsportu
P(A|B) je podmíněná pravděpodobnost jevu A za předpokladu, že nastal jev B, a naopak P(B|A) je pravděpodobnost jevu B podmíněná výskytem jevu A.

Předpověď počasí s Bayesovou analýzou

Předpokládejme, že existuje 30% šance na to, že zítra bude pršet. A víte taky to, že v rámci průměrného dne existuje 50% šance na to, že se na obloze objeví mraky.

Také víte, že pravděpodobnost výskytu mraků je 100 %, pokud je 100% i pravděpodobnost deště (když prší, vždy jsou na obloze mraky). Máte tedy následující informace:

  • P(A) = Pravděpodobnost deště = 30 %
  • P(B) = Pravděpodobnost mraků = 50 %
  • P(B|A) = Pravděpodobnost mraků pokud prší = 100 %

Ráno se vzbudíte a získáte novou informaci – na obloze jsou mraky. Měli byste tedy svou původní Bayesovu analýzu aktualizovat (ohledně pravděpodobnosti toho, že bude pršet).

Takže když provedeme již známý výpočet P(A/B) =  P(A) * P(B/A) / P(B) = Šance na déšť * Šance výskytu mraků v případě, že bude pršet / Šance výskytu mraků = 30 % * 100 % / 50 % = 60 %.

Pravděpodobnost toho, že bude pršet, tak nyní vzrostla na 60 %.

Bayesova analýza a sportovní sázení

Nyní se konečně podíváme na to, jak Bayesova analýza funguje ve skutečné praxi. Řekněme, že si chcete vsadit na zápas Bayernu Mnichov a myslíte si, že Bayern má šanci na výhru přesně 50 %. Také víte, že když Bayern vyhraje, v 11 % případů prší, kdežto obvyklá šance na déšť během zápasu tohoto týmu je 10 %.

  • P(A) = Pravděpodobnost výhry Bayernu Mnichov = 50 %
  • P(B) = Pravděpodobnost deště během zápasu = 10 %
  • P(B|A) = Pravděpodobnost deště během zápasu, který Bayern vyhraje = 11 %

Jakmile získáte informace o počasí, nemusíte příliš dlouho řešit, jak dané informace ovlivní kurzy. Jako mnoho profesionálů v mnoha různých odvětvích (včetně sportovního sázení) totiž můžete použít Bayesovu analýzu, respektive ji aktualizovat podle nově získaných informací.

Pokud bude pršet, víte, že P(A|B) = P(A) * P(B|A) / P(B) = 50 % * 11 % / 10 % = 55 %.

Všimněte si toho, že P(B|A) / P(B) je to samé, jako kdybyste se zeptali „O kolik procent je pravděpodobnější B za předpokladu výskytu A?“ V tomto případě by odpovědí bylo 11/10 (11 % děleno 10 %). Výsledné číslo 1,1 následně vynásobíme původní pravděpodobností výhry Bayernu (50 %) a dostaneme novou pravděpodobnost – v našem případě 55 %.

Jakmile víte, že B je dáno, váš nový odhad ohledně A se může příslušně změnit jednoduchým vynásobením – P(A) * P(B|A) / P(B).

Čtěte
Jednoduchý návod jak vsadit s výhodou (value bet)

Shrnutí

Sázkaři jsou velice často sami svými největšími nepřáteli. Hlavním důvodem je jejich dogmatický přístup a neochota brát v potaz nové informace, které mohou výrazně ovlivnit pravděpodobnost konkrétních výsledků. Bayesova analýza proti tomuto zlozvyku efektivně a jednoduše bojuje, jelikož vám umožňuje (respektive vás k tomu ještě rovnou postrkuje) snadno vypočítat dopad nových informací na celkovou pravděpodobnost.

Samozřejmě, že neexistuje žádný univerzální sázkový systém, se kterým byste vždy vyhráli. Ani tento strategický koncept bohužel nefunguje jako nějaká „křišťálová koule,“ nicméně Bayesova analýza vám bezpochyby může dopomoci k zisku value. A poděkovat za ni můžete knězi z 18. století.

18+ Ministerstvo financí varuje: Účastí na hazardní hře může vzniknout závislost!
Máte názor k článku nebo události?
Můžete se podělit s jinými čtenáři níže
  1. roman
    7.4.2015 12:54

    Dobrý den chtěl bych se zeptat jak se da najít value pomoci bayesovy věty, mohl byste dát nějaký konkrétnější případ využiti této věty? děkuji.

    Odpověď

Váš názor

Tato stránka používá Akismet k omezení spamu. Podívejte se, jak vaše data z komentářů zpracováváme..

TIPY zdarma do emailu!

Infikuj se jako první!

TIPY zdarma do emailu!
TOP10SportSites
Search